Импульсный стабилизатор напряжения

Содержание

Импульсный стабилизатор напряжения – принцип действия

Импульсный стабилизатор напряжения

Линейные стабилизаторы имеют общий недостаток – это малый КПД и высокое выделение тепла. Мощные приборы, создающие нагрузочный ток в широких пределах имеют значительные габариты и вес. Чтобы компенсировать эти недостатки, разработаны и используются импульсные стабилизаторы.

Устройство, поддерживающее в постоянном виде напряжение на потребителе тока с помощью регулировки электронным элементом, действующим в режиме ключа. Импульсный стабилизатор напряжения, так же как и линейный существует последовательного и параллельного вида. Роль ключа в таких моделях исполняют транзисторы.

Так как действующая точка стабилизирующего устройства практически постоянно расположена в области отсечки или насыщения, проходя активную область, то в транзисторе выделяется немного тепла, следовательно, импульсный стабилизатор имеет высокий КПД.

Стабилизация осуществляется с помощью изменения продолжительности импульсов, а также управления их частотой. Вследствие этого различают частотно-импульсное, а другими словами широтное регулирование. Импульсные стабилизаторы функционируют в комбинированном импульсном режиме.

В устройствах стабилизации с регулированием широтно-импульсным частота импульсов имеет постоянную величину, а продолжительность действия импульсов является непостоянным значением. В приборах с регулированием частотно-импульсным продолжительность импульсов не изменяется, меняют только частоту.

На выходе устройства напряжение представлено в виде пульсаций, соответственно оно не годится для питания потребителя. Перед подачей питания на нагрузку потребителя, его нужно выровнять. Для этого на выходе импульсных стабилизаторов монтируют выравнивающие емкостные фильтры. Они бывают многозвенчатыми, Г-образными и другими.

Средняя величина напряжения, поданная на нагрузку, вычисляется по формуле:

  • Ти – продолжительность периода.
  • tи – продолжительность импульса.
  • Rн – значение сопротивления потребителя, Ом.
  • I(t) – значение тока, проходящего по нагрузке, ампер.

Ток может перестать протекать по фильтру к началу следующего импульса, в зависимости от индуктивности. В этом случае идет речь о режиме действия с переменным током. Ток также может дальше протекать, тогда имеют ввиду функционирование с постоянным током.

При повышенной чувствительности нагрузки к импульсам питания, выполняют режим постоянного тока, не смотря со значительными потерями в обмотке дросселя и проводах. Если размер импульсов на выходе прибора незначителен, то рекомендуется функционирование при переменном токе.

Принцип работы

В общем виде импульсный стабилизатор включает в себя импульсный преобразователь с устройством регулировки, генератор, выравнивающий фильтр, снижающий импульсы напряжения на выходе, сравнивающее устройство, подающее сигнал разности входного и выходного напряжения.

Схема основных частей стабилизатора напряжения показана на рисунке.

Напряжение на выходе прибора поступает на сравнивающее устройство с базовым напряжением. В результате получают пропорциональный сигнал. Его подают на генератор, предварительно усилив его.

При регулировании в генераторе разностный аналоговый сигнал модифицируют в пульсации с постоянной частотой и переменной продолжительностью. При регулировании частотно-импульсном продолжительность импульсов имеет постоянное значение. Она меняет частоту импульсов генератора в зависимости от свойств сигнала.

Образованные генератором управляющие импульсы проходят на элементы преобразователя. Транзистор регулировки действует в режиме ключа.

Изменяя частоту или интервал импульсов генератора, есть возможность менять нагрузочное напряжение. Преобразователь модифицирует значение напряжения на выходе в зависимости от свойств управляющих импульсов.

По теории в приборах с частотной и широтной регулировкой импульсы напряжения на потребителе могут отсутствовать.

При релейном принципе действия сигнал, который управляется стабилизатором, образуется с помощью триггера.

При поступлении постоянного напряжения в прибор транзистор, работающий в качестве ключа, открыт, и повышает напряжение на выходе.

сравнивающее устройство определяет сигнал разности, который достигнув некоторого верхнего предела, поменяет состояние триггера, и произойдет коммутация регулирующего транзистора на отсечку.

Напряжение на выходе станет уменьшаться. При падении напряжения до нижнего предела сравнивающее устройство определяет сигнал разности, переключающий снова триггер, и транзистор опять войдет в насыщение.

Разность потенциалов на нагрузке прибора станет повышаться. Следовательно, при релейном виде стабилизации напряжение на выходе повышается, тем самым выравнивается.

Предел срабатывания триггера настраивают с помощью корректировки амплитуды значения напряжения на сравнивающем устройстве.

Стабилизаторы релейного типа имеют повышенную скорость реакции, в отличие от приборов с частотным и широтным регулированием. Это является их преимуществом. В теории при релейном виде стабилизации на выходе прибора всегда будут импульсы. Это является их недостатком.

Повышающий стабилизатор

Импульсные повышающие стабилизаторы применяют вместе с нагрузками, разность потенциалов которых выше, чем напряжение на входе приборов. В стабилизаторе нет гальванической изоляции сети питания и нагрузки. Импортные повышающие стабилизаторы называются boost converter. Основные части такого прибора:

Транзистор вступает в насыщение, и ток проходит по цепи от положительного полюса по накопительному дросселю, транзистору. При этом накапливается энергия в магнитном поле дросселя. Нагрузочный ток может создать только разряд емкости С1.

Отключим выключающее напряжение с транзистора. При этом он вступит в положение отсечки, а следовательно на дросселе появится ЭДС самоиндукции. Оно будет коммутировано последовательно с напряжением входа, и подключено по диоду к потребителю. Ток пойдет по цепи от положительного полюса к дросселю, по диоду и нагрузке.

В этот момент магнитное поле индуктивного дросселя выдает энергию, а емкость С1 резервирует энергию для поддержки напряжения на потребителе после вхождения транзистора в режим насыщения. Дроссель является для резерва энергии и не работает в фильтре питания. При повторной подаче напряжения на транзистор, он откроется, и весь процесс пойдет заново.

Стабилизаторы с триггером Шмитта

Такой вид импульсного устройства имеет свои особенности наименьшим набором компонентов. Основную роль в конструкции играет триггер. В его состав входит компаратор. Основной задачей компаратора является сравнивание величины выходной разности потенциалов с наибольшим допустимым.

Принцип действия аппарата с триггером Шмитта состоит в том, что при увеличении наибольшего напряжения осуществляется коммутация триггера в позицию ноля с размыканием электронного ключа. В одно время разряжается дроссель. Когда напряжение доходит до наименьшего значения, то выполняется коммутация на единицу. Это обеспечивает замыкание ключа и прохождение тока на интергратор.

Такие приборы имеют отличия своей упрощенной схемой, но использовать их можно в особых случаях, так как импульсные стабилизаторы бывают только повышающими и понижающими.

Понижающий стабилизатор

Стабилизаторы импульсного типа, функционирующие с понижением напряжения, являются компактными и мощными приборами питания электрическим током. При этом они имеют низкую чувствительность к наводкам потребителя постоянным напряжением одного значения.

Гальваническая изоляция выхода и входа в понижающих устройствах отсутствует. Импортные приборы получили название chopper. Выходное питание в таких устройствах постоянно находится меньше входного напряжения.

Схема импульсного стабилизатора понижающего типа изображена на рисунке.

Подключим напряжение для управления истоком и затвором транзистора, который войдет в положение насыщения. По нему будет проходить ток по цепи от положительного полюса по выравнивающему дросселю и нагрузке. В прямом направлении ток по диоду не протекает.

Отключим управляющее напряжение, которое выключает ключевой транзистор. После этого он будет находиться в положении отсечки. ЭДС индукции выравнивающего дросселя будет преграждать путь для изменения тока, который пойдет по цепи через нагрузку от дросселя, по общему проводнику, диод, и опять придет на дроссель. Емкость С1 будет разряжаться и будет удерживать напряжение на выходе.

При подаче отпирающей разницы потенциалов между истоком и затвором транзистора, он перейдет в режим насыщения и вся цепочка вновь повторится.

Инвертирующий стабилизатор

Импульсные стабилизаторы инвертирующего типа используют для подключения потребителей с постоянным напряжением, полюсность которого имеет противоположное направление полюсности разности потенциалов на выходе устройства.

Его значение  может быть выше сети питания, и ниже сети, в зависимости от настройки стабилизатора. Гальваническая изоляция сети питания и нагрузки отсутствует. Импортные приборы инвертирующего типа называются buck-boost converter.

На выходе таких приборов напряжение всегда ниже.

Подключим управляющую разность потенциалов, которое откроет транзистор между истоком и затвором. Он откроется, и ток пойдет по цепи от плюса по транзистору, дросселю к минусу. При таком процессе дроссель резервирует энергию с помощью своего магнитного поля.

Отключим разность потенциалов управления от ключа на транзисторе, он закроется. Ток пойдет от дросселя по нагрузке, диоду, и возвратится в первоначальное положение. Резервная энергия на конденсаторе и магнитном поле будет расходоваться для нагрузки. Снова подадим питание на транзистор к истоку и затвору.

Транзистор опять станет насыщаться и процесс повторится.

Преимущества и недостатки

Как и все приборы, модульный импульсный стабилизатор не идеален. Поэтому ему присущи минусы и плюсы. Разберем основные из преимуществ:

  • Простое достижение выравнивания.
  • Плавное подключение.
  • Компактные размеры.
  • Устойчивость выходного напряжения.
  • Широкий интервал стабилизации.
  • Повышенный КПД.

Недостатки прибора:

  • Сложная конструкция.
  • Много специфических компонентов, снижающих надежность устройства.
  • Необходимость в использовании компенсирующих устройств мощности.
  • Сложность работ по ремонту.
  • Образование большого количества помех частоты.

Допустимая частота

Функционирование импульсного стабилизатора возможно при значительной частоте преобразования. Это является основной отличительной чертой от устройств, имеющих трансформатор сети. Увеличение этого параметра дает возможность получить наименьшие габариты.

Для большинства приборов интервал частот будет равен 20-80 килогерц. Но при выборе ШИМ и ключевых приборов необходимо учесть высокие гармоники токов. Верхняя граница параметра ограничена определенными требованиями, которые предъявляются к радиочастотным приборам.

Простой импульсный стабилизатор напряжения

Источник: http://ostabilizatore.ru/impulsnyj-stabilizator-naprjazhenija.html

Импульсные стабилизаторы напряжения

Импульсный стабилизатор напряжения

Читать все новости ➔

Общим недостатком линейных стабилизаторов в случае существенной флюктуации входного напряжения является низкий КПД и повышенное тепловыделение. Мощные линейные стабилизаторы, обеспечивающие ток нагрузки от нескольких ампер и более, обладают большими массой и габаритами. Для существенной компенсации указанных недостатков применяют импульсные стабилизаторы.

Импульсным стабилизатором напряжения называют устройство, которое поддерживает неизменным напряжение на нагрузке за счет регулирования компонентом, работающим в ключевом режиме. Импульсные стабилизаторы, как и линейные, бывают параллельного и последовательного типов. В качестве ключевого компонента чаще всего используют транзисторы.

Поскольку рабочая точка регулирующего прибора почти все время находится в области насыщения или отсечки, минуя активную область, в транзисторе рассевается мало тепла, а значит, КПД импульсного стабилизатора высок.

Стабилизация реализована путем изменения длительности импульсов или управления частотой их следования. Соответственно, различают широтно-импульсное (ШИ) или частотно-импульсное (ЧИ) регулирование. Иногда импульсные стабилизаторы работают в смешанном широтно-частотно-импульсном режиме (ЧШИ).

В стабилизаторах с ШИ-регулированием частота следования импульсов постоянна, а длительность импульсов непостоянна. В стабилизаторах с ЧИ-регулированием длительность импульсов неизменна, а варьируют частоту.

После регулирующего прибора напряжение имеет импульсную форму, а значит непригодно для непосредственного питания нагрузки. Прежде чем подать напряжение на нагрузку, его необходимо сгладить, для чего на выходе всех импульсных стабилизаторов устанавливают сглаживающие индуктивно-емкостные фильтры. Фильтры могут быть многозвенными, П-образными, Г-образными и других видов.

Усредненное напряжение, приложенное к нагрузке, можно найти по формуле:где Ти —длительность периода, с;

tи — длительность импульса, с;

Rн — сопротивление нагрузки, Ом;

I(t) — величина тока, протекающего через нагрузку, А.

В зависимости от индуктивности сглаживающего дросселя ток через LС-фильтр может перестать течь к началу очередного импульса (тогда говорят о режиме работы с разрывным током) или продолжать течь, и в этом случае подразумевают режим работы с неразрывным током.

Если нагрузка требовательна к пульсациям напряжения, то предпочитают режим неразрывных токов, мирясь с обычно большими затратами провода обмотки дросселя. Если величина пульсации выходного напряжения несущественна, то целесообразна работа в режиме разрывных токов.

Принцип действия импульсных стабилизаторов напряжения

В общем случае импульсный стабилизатор состоит из импульсного преобразователя, содержащего регулирующий прибор; задающего генератора, управляющего преобразователем; сглаживающего фильтра, уменьшающего пульсации выходного напряжения, и устройства сравнения, вырабатывающего разностный сигнал между выходным и опорным напряжениями.

Соединение основных блоков отражено на структурной схеме импульсного стабилизатора напряжения, показанной на рис. 1.

Рис.1. Импульсный стабилизатор напряжения

Выходное напряжение стабилизатора подают на устройство сравнения с образцовым напряжением и на выходе устройства получают сигнал, пропорциональный разности этих напряжений. Разностный сигнал сразу же подают на задающий генератор или вначале увеличивают его усилителем постоянного тока.

При ШИ-регулировании в задающем генераторе аналоговый разностный сигнал преобразуют в импульсы с фиксированной частотой и изменяемой длительностью, а при ЧИ-регулировании длительность импульсов постоянна, а в зависимости от параметров сигнала изменяют частоту генерируемых импульсов.

Выработанные задающим генератором импульсы управления поступают на компоненты преобразователя, регулирующий транзистор которого работает в ключевом режиме. Варьируя частоту или ширину импульсов генератора, можно изменять напряжение на нагрузке.

В зависимости от параметров импульсов управления, преобразователь корректирует величину выходного напряжения, стабилизируя его. Теоретически в стабилизаторах с ШИ- и ЧИ-регулированием пульсации напряжения на нагрузке могут полностью отсутствовать.

При релейной стабилизации сигнал, управляющий преобразователем напряжения, вырабатывается триггером. При подаче постоянного напряжения на вход стабилизатора ключевой транзистор преобразователя открыт, и возрастает выходное напряжение.

Устройство сравнения вырабатывает разностный сигнал, который, достигая определенного верхнего порога, изменит состояние триггера, и он переключит регулирующий транзистор в состояние отсечки. Выходное напряжение стабилизатора начнет снижаться.

При достижении нижнего порога устройство сравнения вырабатывает разностный сигнал, который вновь переключит триггер, и регулирующий транзистор войдет в состояние насыщения. Напряжение на нагрузке стабилизатора начнет возрастать.

Таким образом, при релейной стабилизации выходное напряжение постоянно флюктуирует, и его среднее значение соответствует номинальному напряжению. Порог срабатывания триггера устанавливают корректировкой амплитуды напряжения на выходе устройства сравнения.

Релейные стабилизаторы обладают более высоким быстродействием по сравнению со стабилизаторами с ШИ- и ЧИ-регулированием, что является достоинством. Теоретически при релейной стабилизации всегда в выходном напряжении будут присутствовать пульсации, что относят к недостаткам.

Повышающий стабилизатор

Повышающие импульсные стабилизаторы используют совместно с нагрузками, напряжение питания которых больше, чем входное напряжение стабилизаторов. Гальванической развязки нагрузки и питающей сети нет. За рубежом повышающие стабилизаторы носят название “boost converter”. Рассмотрим рис. 2, на котором изображены основные компоненты такого стабилизатора.

Рис.2. Повышающий стабилизатор

Приложим отпирающее транзистор VT1 напряжение управления между затвором и истоком. Транзистор входит в состояние насыщения, и ток течет по цепи от +Ubx, через накопительный дроссель L1, открытый транзистор VT1, -Ubx. При этом в магнитном поле дросселя L1 накапливается энергия. Ток через нагрузку может обеспечить только разряд конденсатора С1.

Снимем отпирающее напряжение управления с транзистора VT1. Транзистор перейдет в состояние отсечки, на выводах дросселя L1 возникнет напряжение ЭДС самоиндукции, причем оно будет включено последовательно с входным направлением и приложено через диод VD1 к нагрузке.

Ток потечет по цепи +Ubx, дроссель L1, диод VD1, нагрузка, -Ubx. В это время магнитное поле дросселя L1 отдает энергию, а конденсатор С1 энергию запасает для поддержания напряжения на нагрузке после того, как транзистор VT1 войдет в насыщение.

Дроссель L1 служит только для запасания энергии и не участвует в фильтрации напряжения.

Снова подадим отпирающее напряжение на транзистор VT1, который откроется, и рассмотренный процесс повторится сначала.

Понижающий стабилизатор

Понижающие импульсные стабилизаторы — это мощные и, в то же время, компактные устройства электропитания нечувствительной к наводкам нагрузки постоянным напряжением неизменной величины.

Гальваническая развязка между входом и выходом в понижающих импульсных стабилизаторах отсутствует. За рубежом понижающие стабилизаторы называют “chopper”. Выходное напряжение в таких стабилизаторах всегда ниже входного.

Включение важнейших компонентов понижающего импульсного стабилизатора показано на рис. 3.

Рис.3. Понижающий стабилизатор

Приложим напряжение управления между затвором и истоком транзистора VT1. Транзистор войдет в состояние насыщения, и потечет ток по цепи от +Uвх, через сглаживающий дроссель L1, нагрузку, -Uвх. Ток в прямом направлении через диод VD1 не протекает.

Уберем напряжение управления, отпирающее ключевой транзистор, и он войдет в состояние отсечки. ЭДС самоиндукции сглаживающего дросселя L1 будет препятствовать изменению тока. Ток потечет по цепи от дросселя L1, через нагрузку, общий провод, диод VD1, и вернется в дроссель. Конденсатор С1 разряжается и при этом поддерживает выходное напряжение.

Подадим отпирающее напряжение между затвором и истоком ключевого транзистора VT1. Транзистор перейдет в насыщение, и процесс повторится сначала.

Инвертирующий стабилизатор

Инвертирующие импульсные стабилизаторы применяют для питания нагрузок фиксированным напряжением, полярность которого противоположна полярности входного напряжения.

Величина выходного напряжения инвертирующего стабилизатора может быть как больше напряжения питающей сети, так и меньше в зависимости от того, как стабилизатор отрегулирован. Гальваническая развязка питающей сети и нагрузки отсутствует.

В иностранной литературе инвертирующие импульсные стабилизаторы называют “buck-boost converter”. Выходное напряжение в таких стабилизаторах всегда ниже входного.

Включение основных компонентов инвертирующего стабилизатора изображено на рис. 4.

Рис.4. Инвертирующий стабилизатор

Приложим напряжение управления, отпирающее транзистор VТ1, между его затвором и истоком. Транзистор открывается, и ток течет по цепи от +Uвх, открытый транзистор VТ1, дроссель L1, -Uвх. В это время магнитное поле дросселя L1 запасает энергию.

Уберем напряжение управления затвор-исток с ключевого транзистора VТ1, который от этого закроется. Ток потечет по цепи от дросселя L1, через нагрузку, диод и снова вернется в дроссель L1. Энергия, запасенная в конденсаторе С1 и в магнитном поле дросселя L1, в это время расходуется на питание нагрузки.

Опять подадим отпирающее транзистор VТ1 напряжение управления между затвором и истоком. Транзистор войдет в насыщение, и цикл повторится.

Источник: http://meandr.org/archives/25095

Импульсный стабилизатор напряжения с триггером Шмитта и ШИМ

Импульсный стабилизатор напряжения

Из этой статьи вы узнаете о:

Каждый из нас в своей жизни использует большое количество различных электроприборов. Очень большое их число нуждается в низковольтном питании. Другими словами они потребляют электроэнергию, которая не характеризуется напряжением в 220 вольт, а должна иметь от одного до 25-ти вольт.

Конечно, для подачи электроэнергии с таким количеством вольт используются специальные приборы. Однако, проблема возникает не в понижении напряжения, а в соблюдении ее стабильного уровня.

Для этого можно воспользоваться линейными стабилизационными устройствами. Однако такое решение будет очень громоздким удовольствием. Данную задачу идеально выполнит любой импульсный стабилизатор напряжения.

Разобранный импульсный стабилизатор

Если сравнивать импульсные и линейные стабилизационные приборы, то главное их отличие заключается в работе регулирующего элемента. В первом типе приборов этот элемент работает как ключ. Другими словами он находится или в замкнутом, или в разомкнутом состоянии.

Главными элементами импульсных стабилизационных устройств являются регулирующий и интегрирующий элементы. Первый обеспечивает подачу и прерывания подачи электрического тока. Задачей второго является накопление электроэнергии и постепенная ее отдача в нагрузку.

Принцип работы импульсных преобразователей

Принцип работы импульсного стабилизатора

Главный принцип работы заключается в том, что при замыкании регулирующего элемента электроэнергия накапливается в интегрирующем элементе. Это накопление наблюдается повышением напряжения. После того, когда регулирующий элемент отключается, т.е.

размыкает линию подачи электричества, интегрирующий компонент отдает электричество, постепенно снижая величину напряжения.

Благодаря такому способу работы импульсное стабилизационное устройство не тратит большого количества энергии и может иметь небольшие габариты.

Регулирующий элемент может представлять собой тиристор, биполярный транзитор или полевой транзистор. В качестве интегрирующих элементов могут использоваться дроссели, аккумуляторы или конденсаторы.

Заметим, что импульсные стабилизационные устройства могут работать двумя различными способами. Первый предполагает использование широтно-импульсной модуляции (ШИМ). Второй – триггера Шмитта. Как ШИМ, так и триггер Шмитта используются для управления ключами стабилизационного устройства.

Стабилизатор с использованием ШИМ

Импульсный стабилизатор постоянного напряжения, который работает на основе ШИМ, кроме ключа и интегратора в своем составе имеет:

  1. генератор;
  2. операционный усилитель;
  3. модулятор

Работа ключа напрямую зависит от уровня напряжения на входе и скважности импульсов. Влияние на последнюю характеристику осуществляют частота генератора и емкость интегратора. Когда ключ размыкается, начинается процесс отдачи электричества из интегратора в нагрузку.

Принципиальная схема стабилизатора ШИМ

При этом операционный усилитель сравнивает уровни выходного напряжения и напряжения сравнения, определяет разницу и передает необходимую величину усиления на модулятор. Этот модулятор осуществляет преобразование импульсов, которые выдает генератор, на прямоугольные импульсы.

Конечные импульсы характеризуются таким же отклонением скважности, которое пропорционально разности выходного напряжения и напряжения сравнения. Именно эти импульсы и определяют поведение ключа.

То есть при определенной скважности ключ может замыкаться, или размыкаться. Получается, что главную роль в этих стабилизаторах играют импульсы. Собственно от этого и пошло название этих устройств.

Преобразователь с триггером Шмитта

В тех импульсных стабилизационных приборах, которые используют триггер Шмитта, уже нет такого большого количества компонентов, как в предыдущем типе устройства. Здесь главным элементом является триггер Шмитта, в состав которого входит компаратор. Задачей компаратора является сравнение уровня напряжения на выходе и максимально допустимого ее уровня.

Стабилизатор с триггером Шмитта

Когда напряжение на выходе превысило свой максимальный уровень, триггер переключается в нулевую позицию и приводит к размыканию ключа. В это время дроссель или конденсатор разряжаются. Конечно, за характеристиками электрического тока постоянно следит вышеупомянутый компаратор.

И тогда, когда напряжение падает ниже требуемого уровня, фаза «0» меняется на фазу «1». Далее ключ замыкается, и электрический ток поступает в интегратор.

Преимуществом такого импульсного стабилизатора напряжения является то, что его схема и конструкция являются достаточно простыми. Однако он не может применяться во всех случаях.

Стоит отметить, что импульсные стабилизационные устройства могут работать только в отдельных направлениях. Здесь имеется в виду, что они могут быть как сугубо понижающими, так и сугубо повышающими. Также выделяют еще два типа таких приборов, а именно инвертирующий и устройство, которые могут произвольно изменять напряжение.

Схема снижающего импульсного стабилизационного прибора

В дальнейшем рассмотрим схему снижающего импульсного стабилизационного прибора. Он состоит из:

  1. Регулирующего транзистора или любого другого типа ключа.
  2. Катушки индуктивности.
  3. Конденсатора.
  4. Диода.
  5. Нагрузки.
  6. Устройства управления.

Узел, в котором будет накапливаться запас электроэнергии, состоит из самой катушки (дросселя) и конденсатора.

В то время, когда ключ (в нашем случае транзистор) подключен, ток движется к катушке и конденсатору. Диод находится в закрытом состоянии. То есть он не может пропускать ток.

За исходной энергией следит устройство управления, которое в нужный момент отключает ключ, то есть переводит его в состояние отсечки. Когда ключ находится в этом состоянии, происходит уменьшение тока, который проходит через дроссель.

Снижающий импульсный стабилизатор

При этом в дросселе меняется направление напряжения и результате ток получает напряжение, величина которого является разницей между электродвижущей силой самоиндукции катушки и количеством вольт на входе. В это время открывается диод и дроссель через него подает ток в нагрузку.

Когда запас электроэнергии исчерпывается, то происходит подключение ключа, закрытия диода и зарядка дросселя. То есть все повторяется.
Повышающий импульсный стабилизатор напряжения работает подобным образом, как и понижающий. Аналогичным алгоритмом работы характеризуется и инвертирующий стабилизационный прибор. Конечно, его работа имеет свои отличия.

Главное отличие импульсного повышающего устройства заключается в том, то в нем входное напряжение и напряжение катушки имеют одно и тот же направление. В результате они суммируются. В импульсном стабилизаторе сначала размещается дроссель, затем транзистор и диод.

В инвертирующем стабилизационном устройстве направление ЭДС самоиндукции катушки является таковым, как и в понижающем. В то время, когда подключается ключ и закрывается диод, питание обеспечивает конденсатор. Любой из таких приборов можно собрать собственноручно.

Полезный совет: вместо диодов можно использовать и ключи (тиристорные или транзисторные). Однако они должны выполнять операции, которые являются противоположными основном ключу. Другими словами, когда основной ключ закрывается, то ключ вместо диода должен открываться. И наоборот.

Выходя из вышеопределенного строения стабилизаторов напряжения с импульсным регулированием, можно определить те особенности, которые относятся к преимуществам, а которые к недостаткам.

Преимущества

Преимуществами этих устройств являются:

  1. Достаточно легкое достижение такой стабилизации, которая характеризуется очень высоким коэффициентом.
  2. КПД высокого уровня. Благодаря тому, что транзистор работает в алгоритме ключа, происходит малое рассеивание мощности. Это рассеяние значительно меньше, чем в линейных стабилизационных устройствах.
  3. Возможность выравнивания напряжения, которое на входе может колебаться в очень большом диапазоне. Если ток является постоянным, то этот диапазон может составлять от одного до 75-ти вольт. Если же ток является переменный, то этот диапазон может колебаться в пределах 90-260 вольт.
  4. Отсутствие чувствительности к частоте напряжения на входе и к качеству электропитания.
  5. Конечные параметры на выходе являются достаточно устойчивыми даже при условии, если происходят очень большие изменения в токе.
  6. Пульсация напряжения, которое выходит из импульсного устройства, всегда находится в пределах миливольтового диапазона и не зависит от того, какую мощность имеют подключенные электроприборы или их элементы.
  7. Стабилизатор включается всегда мягко. Это означает, что на выходе ток не характеризуется прыжками. Хотя надо отметить, при первом включении выброс тока является высоким. Однако для нивелирования этого явления применяются термисторы, которые имеют отрицательный ТКС.
  8. Малые величины массы и размеров.

Недостатки

  1. Если же говорить о недостатках этих стабилизационных приборов, то они кроются в сложности устройства. Из-за большого количества различных компонентов, которые могут выйти из строя довольно быстро, и специфического способа работы прибор не может похвастаться высоким уровнем надежности.
  2. Он постоянно сталкивается с высоким напряжением.

    Во время работы часто происходят переключения и наблюдаются сложные температурные условия для кристалла диода. Это однозначно влияет на пригодность к выпрямлению тока.

  3. Частое переключение коммутирующих ключей создает частотные помехи. Их число очень велико и это является негативным фактором.

Полезный совет: для устранения этого недостатка нужно воспользоваться специальными фильтрами.

  1. Их устанавливают как на входе, так и на выходе.В том случае, когда нужно сделать ремонт, то он также сопровождается сложностями. Здесь стоит отметить, что неспециалист поломку устранить не сможет.
  2. Ремонтные работы может осуществить тот, кто хорошо разбирается в таких преобразователях тока и имеет необходимое количество навыков. Иными словами, если такой прибор сгорел и его пользователь не имеет никаких знаний об особенностях прибора, то лучше отнести на ремонт в специализированные компании.
  3. Также для неспециалистов сложно настраивать импульсные стабилизаторы напряжения, в которые может входить 12 вольт или иное количество вольт.
  4. В том случае, если выйдет из строя тиристор или любой другой ключ, могут возникнуть очень сложные последствия на выходе.
  5. К минусам относится и потребность в использовании приборов, которые будут компенсировать коэффициент мощности. Также некоторые специалисты отмечают, что такие стабилизационные устройства стоят дорого и не могут похвастаться большим количеством моделей.

Сферы применения

Но, несмотря на это, такие стабилизаторы могут применяться в очень многих сферах. Однако наиболее употребляются они в радионавигационном оборудовании и электронике.

Кроме этого, их часто применяют для телевизоров с жидкокристаллическим дисплеем и жидкокристаллических мониторов, источников питания цифровых систем, а также для промышленного оборудования, которое нуждается в токе с низким количеством вольт.

Полезный совет: часто импульсные стабилизационные устройства используют в сетях с переменным током. Сами устройства превращают такой ток в постоянный и в том случае, если нужно подключить пользователей, нуждающихся в переменном токе, то на входе нужно подключить фильтр сглаживания и выпрямитель.

Стоит отметить, что любой низковольтный прибор требует использования таких стабилизаторов. Также их можно использовать для непосредственной подзарядки различных аккумуляторов и питания мощных светодиодов.

Внешний вид

Как уже отмечалось выше, преобразователи тока импульсного типа характеризуются небольшими размерами. В зависимости от того, на какой диапазон входных вольт они рассчитаны, зависит их размер и внешний вид.

Если они предназначены для работы с очень малой величиной входного напряжения, то они могут представлять собой малую пластмассовую коробку, от которой отходит определенное количество проводов.

Стабилизаторы, рассчитанные на большое количество входных вольт, представляют собой микросхему, в которой находятся все провода и к которой подключаются все компоненты. О них вы уже узнали.

Внешний вид этих стабилизационных устройств также зависит и от функционального назначения. Если они обеспечивают выход регулируемого (переменного) напряжения, то резиторный делитель размещают вне интегральной схемы. В том случае, если из прибора будет выходить фиксированное количество вольт, то этот делитель уже находится в самой микросхеме.

Важные характеристики

При подборе импульсного стабилизатора напряжения, который может выдавать постоянные 5в или иное количество вольт, обращают внимание на ряд характеристик.

Первой и самой важной характеристикой являются величины минимального и максимального напряжения, которое будет входить в сам стабилизатор. О верхних и нижних границах этой характеристики уже отмечалось.

Вторым важным параметром является наиболее высокий уровень тока на выходе.

Третьей важной характеристикой является номинальный уровень выходного напряжения. Иными словами спектр величин, в рамках которого оно может находиться. Стоит отметить, что многие эксперты утверждают, что максимальное входное и выходное напряжения равны.

Однако в реальности это не так. Причиной этого является то, что входные вольты уменьшаются на ключевом транзисторе. В результате на выходе получается несколько меньшее количество вольт. Равенство может быть только тогда, когда ток нагрузки являются очень малым. То же самое касается и минимальных значений.

Важной характеристикой любого импульсного преобразователя является точность напряжения на выходе.

Полезный совет: на этот показатель следует обращать внимание тогда, когда стабилизационное устройство обеспечивает выход фиксированного количества вольт.

Причиной этого является то, что резистор находится в середине преобразователя и точные его работы определяются в производства. Когда число выходных вольт регулируется пользователем, то регулируется и точность.

всего оценок:3, средняя: 4,33 из 5)
Загрузка… Как собрать самостоятельно стабилизатор напряжения. Трехфазный стабилизатор для 380 вольт Стабилизатор напряжения для вашего дома. Как выбрать Особенности электромеханического стабилизатора

Источник: http://electricadom.com/impulsnyjj-stabilizator-napryazheniya-s-triggerom-shmitta-i-shim.html

Особенности применения импульсного стабилизатора напряжения

Импульсный стабилизатор напряжения

Использование различного рода техники в повседневной жизни –это непременный атрибут современного общества. Но далеко не все приборы рассчитаны на подключение к стандартной электросети на 220В. Многие из них потребляют энергию с напряжением от 1 до 25В. Для ее подачи используют специальное оборудование.

Однако его основная задача состоит не столько в понижении параметров на выходе, сколько в соблюдении стабильного их уровня в сети. Решить ее можно при помощи стабилизационного устройства.

Но как правило такие приборы достаточно громоздки и не совсем удобны в применении. Лучший вариант – это импульсный стабилизатор напряжения.

Он отличается от линейных не только габаритами, но и по принципу работы.

Что представляет собой импульсный стабилизатор

Прибор, состоящий из двух основных узлов:

  • Интегрирующего;
  • Регулировки.

На первом происходит накапливание энергии с последующей ее отдачей. Регулирующий блок подает ток и при необходимости выполняет прерывание этого процесса. Причем, в отличие от линейных моделей, в импульсных, этот элемент может находиться в замкнутом или разомкнутом состоянии. Иными словами, он работает как ключ.

Устройство импульсного прибора

Сфера применения таких приборов достаточно широка. Однако наиболее часто они используются в навигационном оборудовании, а также импульсный стабилизатор следует купить для подключения:

  • ЖК телевизоров
  • Источников питания, используемых в цифровых системах;
  • Низковольтного промышленного оборудования.

Могут использоваться импульсные повышающие стабилизаторы напряжения и в сетях с переменным током для преобразования его в постоянный. Приборы этого класса также находят применение в качестве источников питания для мощных светодиодов, подзарядки аккумуляторов.

Как работает оборудование

Принцип действия устройства заключается в следующем. При замыкании регулирующего элемента происходит накопление энергии в интегрирующем. При этом происходит повышение напряжения. При размыкании ключа электричество постепенно отдается потребителям, приводя к снижению напряжения.

Смотрим видео, принцип работы прибора:

Столь простой способ функционирования прибора позволяет экономно расходовать электроэнергию, а кроме того дал возможность создать миниатюрный агрегат.

В качестве регулирующего элемента в нем могут использоваться следующие детали:

В роли интегрирующих узлов прибора выступают:

  • Дроссель;
  • Батарея;
  • Конденсатор.

Конструктивные особенности стабилизатора связаны со способом его работы. Различают устройства двух типов:

Рассмотрим, чем отличаются эти две разновидности импульсных стабилизаторов напряжения.

Модели ШИМ

Приборы этого типа, в конструктивном плане имеют некоторые отличия. Они состоят из двух основных элементов, а также:

  1. Генератора;
  2. Модулятора;
  3. Усилителя.

Их работа имеет прямую зависимость от величины напряжения на входе, а также скважности импульсов.

При размыкании ключа происходит переход энергии в нагрузку и в работу включается усилитель. Он сравнивает значения напряжения и определив разницу между ними передает усиление на модулятор.

Конечные импульсы должны иметь отклонение скважности, которое пропорционально выходным параметрам. Ведь от них зависит положение ключа. При конкретных значения скважности он размыкается или замыкается. Поскольку главную роль в работе прибора играют импульсы, то они и дали ему название.

Приборы с триггером Шмитта

Этот тип импульсных стабилизаторов напряжения отличается минимальным набором элементов. роль в нем отведена триггеру, в состав которого включен компаратор. Задача этого элемента – сравнение значения выходного напряжения с максимально допустимым.

Смотрим видео принцип работы прибора с триггером Шмитта:

Работа прибора заключается в следующем. При превышении максимального напряжения происходит переключение триггера в нулевую позицию с размыканием ключа. Одновременно происходит разрядка дросселя. Но как только напряжение достигнет минимального значения происходит переключение с 0 на 1. Это приводит к замыканию ключа и поступлению тока в интегратор.

Хотя такие устройства и отличаются довольно простой схемой применять их можно только на отдельных направлениях. Объясняется это тем, что импульсные стабилизаторы напряжения могут быть понижающими или повышающими.

Классификация приборов

Подразделение приборов на типы осуществляется по различным критериям. Так по соотношению напряжения на входе и выходе различают следующие виды устройств:

  • Инвертирующие;
  • Произвольно изменяющие напряжение.

В качестве ключа могут использоваться такие детали, как:

Кроме этого существуют отличия и в самой работе импульсных стабилизаторов постоянного напряжения. Исходя из этого они классифицируются на модели, функционирующие на:

  1. На основе широтно-импульсной модуляции;
  2. Двухпозиционные.

Достоинства и недостатки стабилизаторов

Как и любое другое устройство модульный стабилизатор не является идеальным. Он имеет свои плюсы и минусы, о которых следует знать. К достоинствам прибора относятся:

  • Легкое достижение стабилизации;
  • Высокий КПД;
  • Выравнивание напряжения в широком диапазоне;
  • Устойчивые выходные параметры;
  • Компактные габариты;
  • Мягкое включение.

К недостаткам устройства относится в первую очередь сложное конструктивное исполнение. Наличие в нем большого количества специфических элементов не позволяет добиваться высокой надежности. Кроме того, минусом импульсного стабилизатора постоянного напряжения является:

  • Создание большого числа частотных помех;
  • Сложность выполнения ремонтных работ;
  • Потребность в применении устройств, компенсирующих коэффициент мощности.

Допустимый диапазон частот

Работа этого устройства возможна при достаточно высокой частоте преобразования, что является его главным отличием от приборов с сетевым трансформатором. Повышение этого параметра позволило добиться минимальных габаритов.

Для большинства моделей диапазон частот может составлять от 20 до 80 кГц. Однако выбирая как ключевые, так и ШИМ-приборы нужно учитывать высшие гармоники токов. При этом верхнее значение параметра имеет определенные ограничения, соответствующие требованиям, предъявляемым к радиочастотной аппаратуре.

Применение устройств в сетях переменного тока

Приборы этого класса способны преобразовывать постоянный ток на входе в такой же на выходе. Если предполагается использовать их в сети переменного тока, то потребуется установка выпрямителя и сглаживающего фильтра.

Однако следует знать, что с ростом напряжения на входе устройства уменьшается выходной ток и наоборот.

Возможно подключение стабилизатора с использованием мостового выпрямителя. Но в таком случае он будет источником нечетных гармоник и для достижения необходимого коэффициента мощности потребуется использование конденсатора.

Обзор производителей

Выбирая стабилизатор, обращают внимание не только на его технические характеристики, но и на конструктивные особенности. Важна и марка производителя. Вряд ли будет иметь высокое качество прибор, изготовленный не известной широкому кругу покупателей фирмой.

Поэтому большинство потребителей предпочитают выбирать модели, принадлежащие популярным брендам, таким как:

Продукция этих компаний отличается высоким качеством, надежностью и рассчитана на длительный срок службы.

Заключение

Использование бытовой техники и других электроприборов стало неотъемлемым условием комфортной жизни.

Но для того, чтобы ваши устройства не выходили из строя при нестабильной работе электросетей, стоит заранее подумать о приобретении стабилизатора. Какую модель выбрать зависит от параметров используемого оборудования.

Если предполагается подключение современных ЖК телевизоров, мониторов и аналогичных устройств, то идеальный вариант – это импульсный стабилизатор.

Источник: http://GeneratorVolt.ru/ehlektrogenerator/osobennosti-primeneniya-impulsnogo-stabilizatora-napryazheniya.html

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.